

Cluster multi-point studies of the aurora: what did we learn from it ?

Göran Marklund

Space and Plasma Physics School of Electrical Engineering KTH Space Centre, Royal Institute of Technology Stockholm, Sweden

OUTLINE open issues on the aurora-a few examples

Addressed by Cluster

- **1.** Auroral characteristics Scales, E_{\perp} , FACs, n_e gradients
- 2. Evolution of arcs & potentials Growth, decay, life times?
- 3. Structure & Stability of AAR Altitude distrib. of E_{\parallel} and $\Delta \Phi_{\parallel}$?
- 4. U- and S-shaped potentials Rel to plasma boundaries
- 5. Q-S vs Alfvénic acceleration Rel role, Altitude extent ?
- 6. Auroral Density Cavities N_e height profiles, relation to AAR ?

Critical for the study outcome

14 yrs of C1-C4 data, excellent data base for statistical & event studies

Pearls-on-a-string configuration Ideal to study the temporal evolution

Altitude separation between C1 and C3 allows derivation of 2 D acc patterns

Statistics, time lag between C1 and C2

DMSP images of surge, crossed by C2 Time lag between C1 and C3/C4

Good coverage of the AAR by Cluster Pseudo-altitude concept

1. AAR characteristics: electric fields, potential drops, scales

(e-

(e-)

(e-)

 U⁻ - potentials $\Delta \Phi_{max} \approx -10 \text{ kV}$ peak $E_{\perp} \approx 1 \text{ V/m}$ width $\approx 3-10 \text{ km}$ altitude $\approx 0.5-2 \text{ R}_{E}$

Spatial scales

2. Evolution of arcs & potentials-U⁺ potential growth in downward FACs

Evolving U⁺-potentials, seen by Cluster

are closely tied to N_e cavity formation

Marklund et al., Nature, 2001

Numerical simulations Streltsov & Marklund, 2006

2. Evolution of arcs & potentials Growth & decay of Inv.-V's on ~ 100 s

Estimate E_{\parallel} and $\Delta \Phi_{\parallel}$ from C1-C4 conjunction

EVENT 2 2009-02-04 0 MLT, 09 UT

Sadeghi et al., JGR, Sept 2011

3. Structure & stability of the AAR altitude distribution of E_{II} and Altitude 1.4 R-<u>À</u>Η ≓ Altitude 1.0 R 2600 km 17:15 **UT** Upward

currents.

16:55 UT

Marklund et al., PRL, Feb 2011

Two U-shaped + one S-shaped potential combined, consistent with C3 and C1 data, and stable on a time scale of 5 minutes

n Space Agency

4. Structure & stability of the AAR U/S-potentials adjust to the boundary shape

5. Quasi-static vs Alfvénic acceleration - interaction at the PCB

- $\Delta \Phi_{II}$ of the U-potential, extending into the PCB, raises the ion energy to 10 keV.
- Thus, quasi-static & Alfvénic acceleration act jointly on the PCB plasma European Space Agency

5. Quasi-static vs Alfvénic acceleration- relative role for WTS arcs

No	Aurora	Acc type	$\Delta \Phi_{ }^{above}$	$\Delta \Phi_{II}^{below}$	N _e -cavity
a1	PCB	Alfvénic	< 2 kV		decrease
a2	weak,broad	Inverted-V	1.5 kV	1.5 kV	yes, clear
a3	Fold	InvV, embedded in Alfvénic region	4 kV	0 kV	no, below AAR
a4 ₁	surge head	InvV surrounded by Alfvénic region	2 kV	2 kV	intense n _e peak
a4 ₂	surge head	InvV, embedded in Alfvénic region	2 kV	1.5 kV	weak n _e peak
a4 ₃	surge head	InvV surrounded by Alfvénic region	2 kV	3 kV	intense n _e peak
a5	fold-W	InvV adjacent to Alfvénic region	2.5 kV	4 kV	weak n _e peak
a6	sub-visual	Alfvénic	< 0.8 kV		increase
a8	surge horn	Inverted-V	2 kV	0 kV	no, below AAR

- * Alfvénic electrons mostly in R1 / quasi-static in R2
- * PCB (Alfvénic), horn (quasi-static), surge head (60-90% quasi-static)
- ***** High (low) energy electrons dominate the \downarrow (\uparrow) energy flux
- No N_E cavities within Alfvénic arcs, which extend to high altitudes

Li, Marklund, Karlsson, et al, JGR, 2013

5. Statistical altitude distributions of Electric fields & N_E; origin ?

* Large-scale nightside density cavity, extending in MLT with height

- $\boldsymbol{\diamondsuit}$ The altitude distribution of intense E_{\perp} , show a clear gap at 2.8 R_E
- Selow 2.8 RE, mainly quasi-static, above Alfvénic fields (2/

6. Auroral Density Cavities, altitude profiles of Ne in the AAR

Pseudo altitude

PA (t) = 1- $\Delta \Phi_{II}^{a}$ (t) / $\Delta \Phi_{II}^{TOT}$

related to the AAR PA = 1 at the top PA = 0 at the bottom

Alm, Marklund, Karlsson, JGR, 2013.

Conclusions from initial study of 7 events

- N_e drops by a factor 10-100, towards PA=1
- Lower limit exists at PA = 0.4-0.5
- No upper limit seems to exist

6. Auroral Density Cavities-not confined by but extending above the AAR

* At A and B: C1 within the AAR, N_E decreasing, loss-cone distribution

* At C: C1 outside the auroral flux tube, but N_E continues to drop

* Thus, the ADC is not limited by the AAR, but extends beyond it !

European Space Agency

7. Snapshots of the AAR & Electrodynamics of a surge-horn system

SUMMARY: open issues on the aurora addressed/resolved by multi-point data!

1.Auroral charact. & scales

2.Arc potential evolution

3.Structure & Stability of AAR

4. U- / S-potentials

5. Quasi-static vs Alfvénic acc

6. Auroral Density Cavities

7. Auroral Electrodynamics

 E_{\perp} , FACs, $n_e / \Delta n_e$ statistics, peak at ~ 5 km

Growth, decay of $U^+ \& U^-$ potentials on ~ 100 s U^+ growth tied to ionospheric cavity formation

AAR of Inv.-V aurora derived, stable on ~ 5 min AAR snapshots of horn, surge head, surge

Occur at soft / sharp plasma boundaries

Rel contribution (%) derived for surge arcs Operate jointly within PCB aurora Statistical E_{\perp} q-s below 2.8 R_{E} , Alfvénic above

N_e altitude profiles revealed within AAR ADCs not limited but may extend beyond AAR

Snapshots of ED & FAC closure in surge-horn

Multi-point studies of the aurora Where to go next ?

To further our understanding of the dynamic aurora, multi-point missions & G-B networks, dedicated to each of 1-3 is important. Simultanous data coverage of the complete chain will soon be a reality and an important key to further progress !